MINISTRY OF EDUCATION AND HIGHER EDUCATION

FORM FOUR EXAMS, 2021

CHEMISTRY

P/LAND NATIONAL EXAMINATION BOARD

MINISTRY OF EDUCATION AND HIGHER EDUCATION PUNTLAND NATIONAL EXAMINATIONS BOARD

Code	Number	

FORM FOUR EXAMINATION, 2021
TIME: 2 HOURS AND 10 MINUTES FOR READING

CHEMISTRY

Instructions to candidates

- Answer all the questions
- This paper consists of 11 pages, count it and if any is missing inform your invigilator
- Do not write your name and roll number on the exam paper
- Make sure that student's profile is attached to the exam paper, if not, inform you invigilator.
- No extra paper is allowed.
- If you make a mistake, cross out the incorrect answer and write your correct answer.

This exam paper consists of following parts

Parts	Marks	
Part one: Multiple Choice questions	14 marks	
Part two: Structured question	86 marks	
	Total: 100 Marks	

For the markers only

PARTS	MARKS
Part one	
Part two	
TOTAL	%

Ministry of Education and Higher Education Puntland National Examination Board	1
Use this page for through work, it will not be marked.	
page to an odgit work, it will not be marked.	
10-10-10-10-10-10-10-10-10-10-10-10-10-1	

PART ONE: MULTIPLE CHOICE QUESTIONS (14 MARKS)

1- The diagram below shows the electron arrangement of unknown element.

Which group and period in the periodic table does it belong?

A- Group 7 and period 2

B- group 6 and period 2

C- Group 5 and period 7 D- Group 8 and period 4

2- Which electron configuration would you expect to be for 13Al atom in its ground state?

A-1S²2S² B-1S²2S² 2p⁶ C-1S²2S²2P⁶3S² 3p¹ D-1S²2S²2P⁶3S²

3- Which of the following elements has the lowest first ionization energy.

A- Lithium

B- Sodium

C- Potassium

D- Rubidium

4- Which of the following atoms will gain 3 electrons to achieve a stable electron configuration.

A- 16S

B- 15P

C- 17 Cl

5- Which molecule has a linear arrangement of the component atoms?

A- H2O

B- BF3

C- CO2

6- Which of the following **DOES NOT** describe ammonia (NH₃)?

A- lonic compound

B- Pyramidal shape

C- Polar molecule

D- Covalent molecule

7- The half equation that occurs at the anode during the electrolysis of molten Sodium chloride is:

A- $2Cl^- \rightarrow Cl_2 + 2e$

B- Cl₂ + 2e → 2Cl⁻

 $C-Na^+ + 1e \rightarrow Na$

D- Na \rightarrow Na⁺ + 1e

8- When iron(III) oxide is heated with carbon monoxide, iron is produced.

 $Fe_2O_3(s) + 3CO(s) \rightarrow 2Fe(l) + 3CO_2(g)$

What happens to the iron oxide during this reaction?

A- The iron oxide burns

B- the iron oxide is neutralized

C- The iron oxide is oxidized

D- The iron oxide is reduced

9- Phenolphthalein indicator turns the color of alkalis from colorless to:

A- Blue

B- Red

C- Pink

10- What is the concentration in mole/dm³ of a solution of sodium chloride (NaCl) Containing 0.073 moles in 0.03 dm³?

A- 3.1 mol/dm³

B- 2.4mol/dm³ C- 4.1mol/dm³ D- 5.7 mol/dm³

11-The five ionization energies of boron are:

801

2427

3660

25026

32828

Which of the following represents the second ionization of boron?

A) B(g)
$$\rightarrow$$
 B²⁺(g) + 2e

$$\Delta H = + 2427 \text{ kJmol}^{-1}$$

B)
$$B^{+}(g) \rightarrow B^{2+}(g) + 2e^{-2g}$$

$$\Delta H = +2427 \, \text{klmol}^{-1}$$

B)
$$B^{+}(g) \rightarrow B^{2+}(g) + 2e$$
 $\Delta H = +2427 \text{ kJmol}^{-1}$
C) $B(g) \rightarrow B^{2+}(g) + 2e$ $\Delta H = -2427 \text{ kJmol}^{-1}$

$$\Delta H = -2427 \text{ klmol}^{-1}$$

D)
$$B^{+}(g) \rightarrow B^{2+}(g) + 2e$$
 $\Delta H = -2427 \text{ kJmol}^{-1}$

$$\Delta H = -2427 \text{ kJmol}^{-1}$$

12-An organic compound is shown by this formula.

What type of formula is this?

- A) Molecular formula
- C) Structural formula
- B) General Formula

D) Displayed formula

13-What is the correct name of the compound below?

- A) 3,4-dichlorobutane
- C) 3,4-dichlorobutene
- B) 1,2-dichlorobutene
- D) 1,2-dichlorobutane

14- Enthalpy is the total energy content of the reacting materials. It is given the symbol:

- A) ΔH
- B) H
- C) A
- D) 5

PART TWO: STRUCTURAL QUESTIONS (86 MARKS) Question One: (9 marks)

1- The modern periodic table is a table displaced all the elements, their symbols, atomic number and mass number.

Gre I	oup II		1	Н								113	157			3.41	0 4 He
⁷ Li 3 Li belinar	Be 4 Be			TOTAL S								11 B	12 C	14 N	160	VII	20 Ne
23 Na 11 Na 100800	24 Mg	-	FONTONIONA		The tr	ansitic	n elen	ients				27 AI	28 SI	31 p 15	32 S 10 S	35 5 CI	40 Ar 18
39 K 19 retainun	217 - 1 1361-141	AS SC 21	48 Ti 22 900000	STV 283 Common	SA Cr	35 Mr	55Fe 25	59 Co	59 NI 28.	64 Cu	⁶⁵ Zn	76 Ga	73 Ge 32 Ge	75 A5		*6Br	81 Kr.
BS Rb 32 Rb	HR ST.	39 Y	91 2r	41 Nb	08 Mo	90 TC			106Pd	108 Ag	¹³ Cd	115 In	119 Sn	122 Sb 51 Sb	128 Te	127 1	135 Xe 34
SS CS	Se Ba	139La 57.	78 5H1 72 5H1	181Ta	PAW.	180Re 95	190 Os 76	192 lt	10 ¹⁵ P1	197 Au	101Hg	81 TI	207 Pb	209 Bi	210 Po	215 At	HA Rn
123F# 87 James 25	226RA 288	39 At 39 At 30 At	1					territoria de la constanta de			APT COLUMN	Under the last		L Remote-	potential.		
	Lan	thanid	es	Ca Sa	14) Pr 50	ee Na	14/Pm 51	sa Sm	ta Etr	15.2 64 Gd	65 Tb	162 Dy	165 Ho	157 Et	50 Tm	173 Yb 70	1/5 Lts
	,	Actinid	les [52 (h) 50 (h)	in Pa	92 92	No No	244 Pu	Arn	247 Cm	97 BK	351 Cf	aba Es	100 Fm	Md Iol Md	259 Mo 102 Mo	262 LW
	3 Li 3 Na 1 Na 1 Na 1 Na 1 Na 1 Na 1 Na 1 Na 1	23 Na 24 Mg 11 Na 24 Mg 11 Na 24 Ca 13 K 24 Ca 14 Ca 15 K 24 Ca 16 Ca 17 Ca 18 Ca	1 II	1 II 1 1 2 2 3 Na 4 Mg 1 1 3 3 K 2 2 3 Ti 2 3 Na 4 Mg 2 3 Sc 2 2 Ti 2 3 Sc 3	1 II 1 IH 1 II 1 IH 1 II 1 IH 1 II II III 1 II II II III 1 II II II III 1 II									1		III	

	A)) How the elements are arranged in the periodic table	? (1	LM
	В)	How many groups of elements are there in the period	dic table? (1)	M)
-	C)	Which group of elements in the periodic table is calle	ed alkali metals? (1	M)
*********	D)	Which group in the periodic table has two electrons i	n their outer shells?	
	E)	Name the only non-metal that is liquid at room temp	erature. (1M)	
	F)	The element sulphur is in the periodic table.		
		i) Is sulphur metal or non-metal?	(1M)	
		ii) Which period of the periodic table it belongs to	o? (1M)	-
-		iii) Write its group number in the periodic table?	(1M)	
	G)	Explain why noble gases are unreactive?	(1M)	

Question	Two:	(12 marks)
----------	------	------------

1- Fluorine and chlorine both react similarly with sodium to form sodium fluoride and sodium chloride.

a) Explain why fluorine and chlorine react similarly with sodium. (1M)

b) Fluorine forms diatomic molecules, (F2). Fluorine atoms have 9 electrons.

The bond in a fluorine molecule, Is it ionic or covalent? i)

ii) Draw a diagram using dot and cross to show the bonding in a fluorine molecule (F2) (1M)

2- There are two isotopes of the element of chlorine.

a) Describe, in terms of sub-atomic particles, write one similarity and one difference between the two isotopes of chlorine.

Similarity Difference (1M)

3- The electronegativity values can be used to predict the polarity of a bond.

a) Explain the term electronegativity. (2M)

b) Show the polarity of each bond by adding δ^+ or δ^- to each bond of the following molecules. Like this: H—CI H δ + CI δ -

O --- H _______(1M) i)

- ii)
- iii)

iv)

c) Pairs of electron in molecules may be present as bonding or as lone pairs.

i) How many lone pairs that water molecule have?

(1M)

Question three: (18 marks)

1- Use the words in the box to complete the sentences below.

(7M)

Formation	Graphite	Carbon	Electrolysis		
Conductors	Hydrogen	0010011	Homologous series		
) Hydrocarbons are					
and	organic compounds o	containing on	ly		

b) _____series is a set of compounds with the same functional group and have similar chemical properties.

c) Standard enthalpy change of ______ is enthalpy change when one mole of compound formed from its elements under standard conditions

d) All metals are good electrical _____

e) Diamond and ______ are allotropes of carbon

f) _____ is a way to decompose compounds using electrical energy.

2- Form 3 students measured the PH of these substances, (lemon juice, sodium chloride, potassium hydroxide, ammonia and hydrochloric acid), using the PH scales. They found that the substances had PH values of (1, 4, 7, 11, 14).

a) Match the substance against their respective PH values.

One example is done for you.

(5M)

Substance	PH value	
Sugar	7	
Lemon juice		
Salt		
Potassium hydroxide		
Ammonia		
Hydrochloric acid		

3- In a chemical equation, sodium carbonate reacts with hydrochloric acid. Here is a balanced equation for the reaction.

$$Na_2CO_3(s) + 2HCI(aq) \rightarrow 2NaCI(aq) + CO_2(g) + H_2O(l)$$

- a) How many moles of hydrochloric acid react with one mole of sodium carbonate? _______(1M
- b) How many moles of sodium chloride are formed in the reaction?

 (1M)
- c) How many moles of carbon dioxide are produced in the reaction?

 (1M)
- 4- The diagram below shows how to electroplate a steel jug with silver.

- a) Which substance is connected to the anode? (1M)
- b) Which substance is connected to the cathode? (1M)
- c) Name the electrolyte used in the reaction. (1M

Question four (14 marks)

1- Categorize these metals as those extracted from their ores by carbon or carbon monoxide and those extracted by electrolysis. (7M)

Iron, Lead, Magnesium,

Potassium

Aluminum, Sodium, Zinc, Calcium

One example is done for you

Metals extracted by carbon	Metals extracted by electrolysis
	Sodium

2- Successive ionization energy provides evidence for the arrangement of electrons in an atom. The graph below shows the eight successive ionization energy of oxygen.

Study it and answer the questions that follow.

(7m)

a) Explain the term "ionization energy"?

(2M)

b) Write the equation, including state symbols to represent the second ionization energy of oxygen. (ΔH_{12} = 3390 kjmol)

(2NI)

	Form four Chemistry Examination, 2021	
)	Between which two ionization energies is there a large difference in leaenergy?	
i)	An element has the following electronic configuration: 1s ² 2s ² 2p ⁶ Which block of the periodic table does it belong?	3s ² 2p ⁶
		_ (1M)
ii)	Name that element.	(1M)
	ion Five: (16 marks)	
1-	Calculate the relative formula mass of the following: RAMs= (Na=23, O=16, H=1, Ca=40, Cl= 35.5)	
a)	NaOH	
		_ (1M)
b)	CaCl ₂	AND SHAPE SH
		_ (1M)
2-	Balance these chemical equation:	(014)
	a) Mg (s) + O_2 (g) \rightarrow MgO (s)	(2M)
	b) $C_3H_8(g) + O_2(g) \rightarrow CO_2(g) + H_2O(I)$	(3M)
3-	A result showed that 2.4 g of magnesium combined with 1.6 g of oxyg Find the empirical formula of magnesium oxide. (RAMs, Mg = 24, O = Show all your work.	gen. 16)
		(3N
4-	Write full balanced chemical equation, including state symbols for the between: a) Zinc and sulphuric acid	e reaction

b) Chemicals show a rage of different structures. Complete the table below by using these structures Giant ionic giant metallic Simple molecular

(3M)

Compound		Structures
Sodium chloride	(NaCl)	
Ammonia	(NH ₃)	
Copper metal	(Cu)	

Question Six: (11 marks)

- Propane is a gas at room temperature. It is used as a fuel.
 - a) Give one property of propane that makes it suitable for use as a fuel.

(1M)

b) The standard enthalpy change of combustion of propane is represented by an equation like this:

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I) \Delta H^{\otimes}_c = -2220 \text{ KJ/mol}$$

i) Is the reaction endothermic or exothermic (1M)

- ii) State what is meant by standard enthalpy of combustion? (2M)
- c) Complete and label the enthalpy level diagram by using enthalpy change of combustion of propane.

$$C_3H_8$$
 (g) + $5O_2$ (g) \rightarrow $3CO_2$ (g) + $4H_2O$ $\Delta H_c^0 = -2220$ KJ/mol

2- The Figure below shows the thermometer in one experiment before and after the student added a metal to the sulphuric acid solution.

Use the figure to complete Table.

(3)

Before adding metal

After adding metal

Temperature before adding metal in ^o C	
Temperature after adding metal in ^o C	
Change temperature(ΔH) in ^o C	

3- Magnesium ribbon reacts with hydrochloric acid like this:

$$Mg(s) + 2HCl(aq) \rightarrow$$

a) If a 2 gram piece of magnesium ribbon was reacted an excess of hydrochloric acid, what would happen to the rate of a reaction if the concentration of acid was increased? Explain your answer. (1M)

b) If a 2 gram piece of magnesium ribbon was cut into six pieces then reacted with an excess of hydrochloric acid, what would happen to the rate of reaction? Explain your answer. (1M)

Question Seven: (6 marks)

1- Name the following compounds.

a)	CH ₃ CH ₃	(1M)
	The state of the s	14801
h)	CH ₂ CH = CH CH ₂	(1M)

2- Write the general formula for:

End

SOM EXAM

11