MINISTRY OF EDUCATION AND HIGHER EDUCATION GRADE 12 EXAMS, 2006

CHEMISTRY

P/LAND NATIONAL EXAMINATION BOARD

Name	School	
Roll Number		

Puntland State of Somalia

Ministry of Education Puntland National Examination Board

Chemistry Examination June 2006

2½ hours

PLUS 10 MINUTES before the exam for reading through the paper

TOTAL TIME 2 hours 40 minutes

INSTRUCTIONS TO CANDIDATES

This paper consists of 16 PRINTED pages.

Count them now. Inform the invigilator if there are any missing.

This paper consists of two parts:

Section A: 10 marks

Section B: 90 marks TOTAL 100 marks

- Answer ALL questions.
- All answers must be written on this paper in the spaces provided immediately after each question. ONLY WRITE ON THIS EXAM PAPER.
- ALL <u>WORKING</u> SHOULD BE CLEARLY SHOWN IN THE SPACE AFTER THE QUESTION.
- Rough work can be done on page 2. This will not be marked
- NO extra paper is allowed.
- NO CALCULATORS are allowed.
- If you make a mistake cross out the incorrect answer clearly and write your correct answer.

USE THIS PAPER FOR ROUGH WORK.

IT WILL NOT BE MARKED.

Section A: Multiple choice questions

- For each question in this section, circle the correct answer.
- If you change your mind cross out the answer you have wrongly chosen and clearly circle the correct answer.
- If the examiner thinks you have marked two answers you will not receive a mark for that question.
- For each question there is only one correct answer. Each question is worth one mark.
- 1 Which of the following is an example of **chemical change**?

A heating ice to make water

B frying an egg

D

C filtering solid copper from salt solution

chromatography

Which pair of **atoms** has the same number of **neutrons**?

A $\overset{12}{\overset{}_{6}}$ $\overset{24}{\overset{}_{12}}$ $\overset{19}{\overset{}_{9}}$ $\overset{20}{\overset{}_{10}}$ $\overset{Ne}{\overset{}_{9}}$

23 39 59 59 C Na and K D Co and Ni

3 Atoms can form negative ions by:

A proton gain B electron loss

C proton loss

D electron gain?

4 Which of the following **elements** is the *most* **electronegative**?

A Fluorine

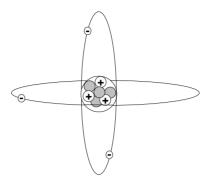
B Chlorine

C Oxygen

D Nitrogen

5 An **electron** in the *second* **energy level** and the *second* **subshell** is described as:

A 1s


B 2s

C 1p

D 2p ?

6 The following diagram represents an atom of **lithium**.

Which of the following statements is true?

- A A lithium atom has 4 electrons B Neutrons carry a charge of +4
- C The atomic number is 4 D A lithium atom has 3 protons
- 7 A pure substance that cannot be chemically decomposed is called:
 - A an element B a compound
 - C a mixture D an isotope?
- When **sodium chloride solution** is electrolysed, what forms at the **cathode**?
 - A sodium B oxygen
 - C chlorine D hydrogen
- 9 AgNO₃ (aq) + KI (aq) \rightarrow AgI (s) + KNO₃ (aq)

The reaction shown above is an example of:

- A Dissociation B Decomposition
- C Precipitation D Neutralization?
- When **rainwater** is **acidic** it is called *acid rain*. Which of the following **oxides** will **NOT** be found in acid rain?
 - $\mbox{A} \ \ \mbox{CO}_2 \qquad \mbox{B} \ \mbox{NO}_2 \qquad \mbox{C} \ \mbox{CaO} \qquad \mbox{D} \ \mbox{SO}_2$

Total 10 marks

Section B: Structured questions

- Answer all of the questions below as fully as possible. You must write all your answers in the spaces provided on the paper.
- The mark awarded for each part question is shown at the end of the space provided e.g. (2) means 2 marks.

Que	stion	1									
Н											
	Ве								N		Ne
								Al		CI	
K							Zn				
											Xe

Use **only** the elements **given** in the outline **Periodic Table** above. You can use a chosen element more than once to answer the questions below.

Put the **symbol** or the **name** of **one element** only to answer the question in each case.

Α	A metal	Any of:- K, Be, Zn, Al	(1)
В	A Halogen	CI	(1)
С	A gas at room temperature with diatomic molecules	CI or N	(1)
D	Used to sterilize drinking water	CI	(1)
Ε	A Transition Element	Zn	(1)
F	In the same group of the periodic table as magnesium	Be	(1)

G			3					
	In the same period of the periodic table as calcium	K or Zn	(1)					
Н	A Noble gas	Ne or Xe	(1)					
I	Has 5 electrons in its valency shell	N	(1)					
J	Reacts violently with cold water to form hydrogen gas	К	(1)					
_		Т	otal 10 marks					
Qu	estion 2							
Na	me the method you would use in each case to separat	e each of the following	mixtures:-					
Α	A solution of water and ethanol	Distillation	(1) -					
В	A mixture of sand and water	Filtration	(1)					
С	Salt solution	Evaporation	(1)					
D	An immiscible mixture of oil and ethanol	Separating funnel	(1) -					
E	To separate a mixture of several different coloured inks	Chromatography	_ (1) _					
F.	From the list below:-							
Alι	Aluminium, copper, ammonia, carbon dioxide, sulphur and water							
[i] l	Name the elements							
Alι	ıminium ¹ , copper ¹ , sulphur ¹ minus ¹ for any mistak	(e	.(3)					

SUM EXAMS

[ii] Name the compounds

water¹, ammonia¹, carbon o	dioxide ¹ ,m	inus¹ for any mis	take		(3)
[iii] Write the formulae for th	ne gases in the	list			
NH ₃ ¹ , CO ₂ ¹					(2)
				-	Гotal 13 marks
Question 3					
The electronic configuration	n (arrangement	of electrons) of a	aluminium <i>(:</i>	atomic ni	ımber 13) can
be shown as:-	r (arrangement	01 01001101107 01 0	arammam (inibor 10) dan
Bohr structure 2,8,3 or					
spdf notation 1s ² , 2s ² 2p ⁶					
Electrons in boxes notati	on				
$\uparrow\downarrow$ $\uparrow\downarrow$	$ \begin{array}{ccc} \uparrow\downarrow & & \uparrow\downarrow \\ 2py & 2pz \end{array} $	$\uparrow\downarrow$	\uparrow		
2p <i>x</i>			3p <i>x</i>	3p <i>y</i>	3p <i>z</i>
1s 2s	2p	3s		3р	
Give the Bohr, spdf notation and electrons in boxes notation to show the electronic configurations (arrangement of electrons) of the following elements:-					
(a) Sodium (atomic number	⁻ 11)				(3)
Bohr structure 2,8,1					
spdf notation 1s ² , 2s ² 2p ⁶ ,	3s ¹				
Electrons in boxes notati	on				
$\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$	$\uparrow\downarrow$ $\uparrow\downarrow$	↑			

1s

2p

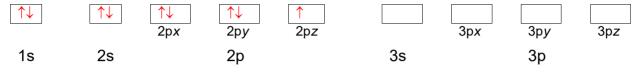
3s

3p*y*

Зр

3p*x*

2s


(b) Fluorine (atomic number 9)

(3)

Bohr structure 2,7,

spdf notation 1s², 2s²2p⁵,

Electrons in boxes notation

(c) What type of bonding is present in a fluorine (F₂) molecule? (1)

covalent

(d) Write a half equation to show a fluorine atom gaining electrons to become a fluoride ion.

(1)

 $F + e^- \rightarrow F^-$

(e) Write a half equation to show a sodium atom losing electrons to become a sodium ion.

(1)

 $Na \rightarrow Na^+ + e^-$

(f) Which *half equation* is showing **reduction**?

(1)

 $F + e^- \rightarrow F^-$

(g) Which half equation is showing oxidation?

(1)

 $Na \rightarrow Na^+ + e^-$

(h) Give **two** properties of sodium fluoride.

High melting point (1)

Conducts electricity when molten or in solution (1)

Total 13 marks

[iv] lodine and potassium bromide

SUM EXAMS

Question 4

The order of reactivity of the Group VII non-metals (Halogens) is:-

The table shows what happens when each of the Halogens (elements) is added to a solution of a different potassium halide. If there is a reaction '**Yes**' is written if no reaction '**No**' is written. The table is incomplete.

	Solution of potassium halide (aq)					
Halogen added	Potassium chloride	Potassium bromide	Potassium iodide			
Bromine (aq)	No	No	Yes			
Chlorine (g)	No	Yes	Yes			
lodine (aq)	No	No	No			

(a) (Complete the table by writing in the table	'Yes'	(reaction) o	r 'No'	(no reaction)	for e	ach
c	of the following:						

[i] Chlorine and potassium bromide	(1
[ii] Chlorine and potassium iodide	(1
[iii] lodine and potassium chloride	(1

(b) What type of reaction is taking place when bromine reacts with potassium iodide?

Displacement or redox reaction (1)

(c) Write a **balanced** symbols **equation** for the reaction between bromine (aq) and potassium iodide (aq). Show state symbols.

 $2KI (aq) + Br₂ (aq) \rightarrow 2KBr (aq) + I₂ (aq)$ (3)

One mark for correct formulae, one for balancing, one for state symbols

Total 8 marks

(1)

Question 5

The reaction between an acid and an alkali can be summed up as:

Acid (aq) + Alkali (aq)
$$\rightarrow$$
 Salt (aq) + Water (I)

- (a) Name this type of reaction.....neutralization....(1)
- (b) Name the salt formed when hydrochloric acid (aq) reacts with potassium hydroxide (aq)
- potassium chloride. (1)
- (c) Name the acid (aq) and alkali needed to make the salt potassium sulphate (aq)
- sulphuric acid and potassium hydroxide.....(2)
- (d) Complete the following word equations:
 - [i] nitric acid (aq) + sodium hydroxide (aq) \rightarrow sodium nitrate (aq) + water (l)
 - [ii] zinc (s) + sulphuric acid (aq) \rightarrow zinc sulphate (aq) + hydrogen (g)
 - [iii] hydrochloric + magnesium → magnesium + water (I) + carbon dioxide (g) acid (aq) carbonate (s) chloride (aq) (4)
- (e) Hydrochloric acid, (0.50 mol/dm³,15.00 cm³), neutralizes a solution of sodium hydroxide, (10.00 cm^3) .
 - [i] Write a **balanced** symbols **equation** for the reaction (2)(This gives you the ratio of no. moles of acid to no. moles of alkali)

$$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H2O(I)$$

- [ii] How many moles of hydrochloric acid were used? (1)
 - 0.50 x 15/1000 = 0.0075 mol of HCl

(1)

Total 13 marks

		•	•			()
0.0	0075 mol of N	NaOH				
	[ii] What is	the concentration of	sodium hydro	xide in mol/dm³	?	(1)
0.0	0075/10 x 10	$00 = 0.75 \text{ mol/dm}^3$	or 0.075 M			

Question 6

Use the table below to answer the questions that follow.

[iii] How many moles of sodium hydroxide were used?

	I	Electrical	Conductivity		
Substance	Solid	Molten	In solution (water)	Melting point (°C)	Boiling point (°C)
Т	Good	Good	Insoluble	1540	2740
U	Poor	Poor	Insoluble	115	444
V	Good	Good	Fizzes & conducts	98	890
W	Poor	Poor	Poor	0	100
X	Poor	Good	Good	808	1465
Υ	Poor	Poor	Good	-114	-85

Use the ${\bf letter}$ only to identify a substance, e.g. ${\bf Y}$

(a) Chose **one substance** which at room temperature which is a:

[i] solidAny of T, U, V or X	(1)
[ii] gasW	.(1)
[iii] liquidY	(1)

(b) Which substance is an ionic solid?X	(1)
Give one reason why you have chosen your substance.	
Does not conduct electricity as a solid but does when molten or in sol	ution(1)
(c) Which two substances are metals?T and V Explain why have you chosen your substances	(2)
Both conduct electricity when solid or molten	(1)
(d) Which substance could be from Group I of the periodic table? V	<u>/</u> (1)
Explain why you have chosen your substance.	
Conducts electricity when solid or molten and reacts with water	(1)
	Total 10 marks
Question 6	
Ethane burns in air according to the following equation:	
$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I)$ ΔF	l = negative

(a) What name is given to reactions in which ΔH is negative? (1) Exothermic¹

(b) The following tables show the energy changes that take place when bonds are broken and formed.

Energy **used** (taken in) to break bonds:

Bond	Number of	Bond dissociation	Energy needed in
	the bonds	energy kJ mole ⁻¹	kJ
C – H	8	413	33041
C – C	2	330	660¹
O = 0	5 ¹	497	2485
	Tota	6449¹	

Energy given out when new bonds are formed:

Bond	Number of	Bond dissociation	Energy given out	
	the bonds	energy kJ mole ⁻¹	in kJ	
C = 0	6	740	44401	
H – O	8 ¹	463	3704	
		81441		

[i] Complete the tables to find the total energy taken in and the total energy given out.

1 mark for each correct answer in the tables (7)

[ii] Use your answers to calculate the energy **given out** by the complete combustion of **1 mole** of ethane. (2)

(-8144+6449) = -1695 kJ/mol

1 mark for mathematical formula and substitution

1 mark for correct answer

Total 10 marks

Question 8

(a) Draw the structure of a hexane molecule.

(1)

(b) Name the two isomers of hexane (given below)

 $\mathsf{H}-\mathsf{C}-\mathsf{H}$

В

B = 2,2'-Dimethylbutane¹

(2)

- (c) Name the remaining two isomers of hexane
- 2,3-Dimethylbutane (1)
- 2,-Methylpentane (1)

(d) Complete the table below for each of the given hydrocarbons:-

(5)

Compound:-	Ethane	Ethene	Ethyne
Homologous Series:-	Alkane	Alkene	Alkyne
Molecular Formulae:-	C ₂ H ₆	C ₂ H ₄	C ₂ H ₂
Structural Formulae:-	H H H-C-C-H H H	H $C = C$ H	H- C ≡ C- H
Type of Covalent Bonding:-	Single	Single and Double	Single and Triple
Is the Carbon to Carbon bonding saturated or unsaturated?	Saturated	Unsaturated	Unsaturated

5 x 1 mark for each correct answer

(a) The following reaction shows the first stage in the formation of a *polyester* in which an alcohol and a carboxylic acid group combine to form an ester with the loss of water:-

(b) Which monomer is the alcohol? (A or B)

(1)

Monomer B

(c) Which monomer is the carboxylic acid? (A or B)

(1)

Monomer A

(d) What type of polymerization is taking place?

(1)

Condensation polymerization

Total 13 marks